QV Active CNC Vision Measuring System

- Cost effective, multifunction, CNC Vision Measuring System.
- Usability has been improved by adopting a color camera and 8-step zoom optics.
- The zoom ratio of 7X (14X at maximum by changing the fixed-magnification objective lens) enables a wide range of inspection from

wide view measurement at low magnification to micro-measurement at high magnification.

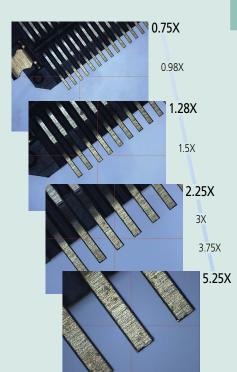
• The 74 mm maximum working distance (1X optional objective) promotes safe working by reducing the risk of collision, and allows greater freedom in fixture design.

From wide view measurement to micro-measurement

Opt	ical mad	gnification	0.5X	0.65X	0.75X	0.85X	0.98X	1X	1.28X	1.3X	1.5X	1.7X	2X	2.25X	2.5X	3X	3.5X	3.75X	4X	5X	5.25X	7X
	w field	Horizontal (H)		10.46		8.00	6.94	6.80	5.31	5.23	4.53	4.00	3.40	3.02	2.72	2.27	1.94	1.81	1.70	1.36	1.30	0.97
(mn	,		10.80		7.20	6.35	5.51	5.40	4.22	4.15	3.60	3.18	2.70	2.40	2.16	1.80	1.54	1.44	1.35	1.08	1.03	0.77
Tota	l magnific	ation (on the monitor)	13.20	17.10	19.80	22.40	25.80	26.40	33.70	34.30	39.50	44.80	52.70	59.30	65.90	79.10	92.30	98.90	105.50	131.80	138.40	184.50
lens	1X obje Workin	ective (optional) g distance	•	•		•		•	-	74 mm	1		•		•		•					
Objective	1.5X ob accessor	ojective (standard y) Working distance			•		•		•		•	42	mm	•		•		•			•	
jdo		ective (optional) Ig distance						•		•		•	•	42	nm	•			•	•		•

Note: The total magnification indicates the magnification on the monitor when the size of the **QVPAK** video window is 178.8×143.0 mm (default).

SPECIFICATIONS


Model No.		QV Active 202	QV Active 404		
Туре		Standard model	Standard model		
Measuring range (X×Y×Z)		250×200×150 mm (250×200×118 mm: when 1X objective is used) 1X objective is use			
Observation unit		Zoom unit (8 positions)			
Imaging device	g device Color CMOS camera				
	E1x, E1y	(2 + 3L/1000) μm			
	E1Z	(3 + 5L/1000) μm			
Vision measuring accuracy*	E2	(2.5 + 4L/	′1000) μm		
	Accuracy guaranteed with optics specified	Objective: 1.5X, Optical magnification: 5.25X			
Accuracy guaranteed temperatur	re	20±1 °C	20±1 °C		

K-3

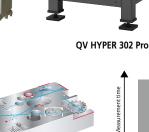
* Inspected to a Mitutoyo standard. L=length between two arbitrary points (mm)

Refer to the **QUICK VISION Active** Series Brochure (**E14022**) for more details.

MeasurLink[®] ENABLED

K

QV APEX Pro/QV HYPER Pro CNC Vision Measuring System


- Equipped with a strobe light and the newly developed StrobeSnap function, **QUICK VISION Pro** models deliver high-speed, high-accuracy measurements.
- The STREAM function is an optional upgrade to improve productivity by up to five times.

QV APEX 404 Pro

StrobeSnap

All the **QUICK VISION Pro** models are equipped with a strobe light, and the newly developed vision measuring function "StrobeSnap" delivers measurements with both high throughput and high accuracy. Regardless of the continuity of measuring positions, measuring time can be shortened by about 35 to 45% for most measurement samples.

Measurement method Conventional measurement

Note: Comparison with old specifications using our demo sample

45%


duction

К

STREAM function (optional)

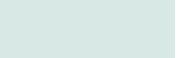
The STREAM function provides an amazingly high throughput, due to the non-stop measurement where the camera motion and the strobe light are synchronized.

It can shorten measuring time more than StrobeSnap on account of continuous element measurement as shown in the following conceptual image of measurement.

Measurement method

Note: Comparison with old specifications using our demo sample

SPECIFICATIONS

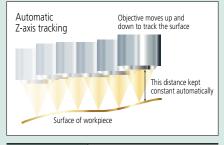

Items	Model No.	QV APEX 302 Pro	QV APEX 404 Pro	QV APEX 606 Pro			
Measuring range (X×	(YxZ)	300×200×200 mm	300×200×200 mm 400×400×250 mm 600×650×250				
Observation unit		Programmable power turret 1X-2X-6X					
Imaging device		B&W CMOS					
	Eux/Euy, mpe	(1.5 + 3L/1000) μm					
Vision measuring · · · · · · · · · · · · · · · · · · ·	Euxy, mpe	(2.0 + 4L/1000) μm					
accuracy .	Euz, mpe	(1.5 + 4L/1000) μm					

 Items
 Model No.
 QV HYPER 302 Pro
 QV HYPER 404 Pro
 QV HYPER 606 Pro

 Imaging device
 B&W CMOS
 B&W CMOS
 Eux/Eury, MPE
 (0.8 + 2L/1000) µm
 (1.4 + 3L/1000) µm
 (1.4 + 3L/1000) µm
 (1.5 + 2L/1000) µm
 (1.5 + 2L

K-4

* L=length between two arbitrary points (mm)



MeasurLink[®] ENABLED

Tracking Auto Focus (TAF)

Laser emitted from the objective lens enables automatic focusing.

The system automatically keeps the object in focus according to its shape, eliminating the task of focus adjustment and increasing measurement throughput.

Laser source	Semiconductor laser (peak wavelength: 690 nm)
Laser safety	Class 2 (JIS C6802: 2014, EN/IEC 60825-1: 2014)
Auto focus system	Objective co-axial autofocusing (knife-edge method)

Mitutovo

Refer to the **QUICK VISION** Series Brochure (**E14028**) for more details.

Mitutoyo

MeasurLink[®] ENABLED Data Management Software by Mitutoyo

QV ACCEL Large CNC Vision Measuring System

- This is a vision measuring machine with moving-bridge type main unit structure suitable for measuring large, thin workpieces.
- QV ACCEL 1212 (range: 1250×1250×100 mm) and QV ACCEL 1517 (range: 1500×1750×100 mm) are available to special order.
- As the stage is immobile on the moving-bridge structure, you can use a simple method to fix a workpiece.

SPECIFICATIONS

Items Model No.			QV ACCEL 808	QV ACCEL 1010			
Measuring range (X×Y×Z)			800×800×150 mm	1000×1000×150 mm			
Observation unit			Programmable power turret 1X-2X-6X				
Imaging device			B&W CC	B&W CCD (1/2 in)			
	E1x, E1y		(1.5 + 3L/1000) μm				
Vision measuring accuracy *	Eız		(1.5 + 4L/1000) μm				
accuracy	E2XY		(2.5 + 4L/1000) μm				
Depentability	Short dimension	X, Y axis	3 <i>σ</i> ≤().2 μm			
Repeatability*	Long dimension	A, T dXIS	3 <i>σ</i> ≤0.7 μm				
Tracking auto focus	device		Optional				

* Inspected to a Mitutoyo standard. L=length between two arbitrary points (mm)

Mitutoyo

Refer to the **QUICK VISION** Series Brochure (**E14028**) for more details.

ULTRA QV Ultra-High Accuracy CNC Vision Measuring System

• Ultra-high accuracy CNC vision measuring machine with measuring accuracy of E_{1XY} (0.25 + L/1000) μ m.

- Our proprietary high-resolution (Resolution: 0.01 µm) and high-accuracy low-expansion glass scales are used on the X, Y and Z axes.
- The main unit utilizes a highly rigid moving Y-axis table with a fixed bridge. The base is made of high stability granite.
- This model is standard-equipped with an automatic temperature compensation function that uses a temperature sensor on the main unit of the measuring machine and a temperature sensor for the workpiece.

SPECIFICATIONS

Items	Model No.	ULTRA QV 404		
Measuring range (X	(xYxZ)	400×400×200 mm		
Observation unit		Programmable power turret 1X-2X-6X		
Imaging device		B&W CCD (1/2 in)		
	E1x, E1Y	(0.25 + L/1000) μm		
Vision measuring	E1z (Full stroke)	(1.5 + 2L/1000) μm (Range 200 mm)		
accuracy *1	E1z (50 mm stroke)*2	(1.0 + 2L/1000) µm (Range 10 to 60 mm)		
	E2XY	(0.5 + 2L/1000) μm		
Tracking auto focus	s device	Optional		

*1 Inspected to a Mitutoyo standard. L=length between two arbitrary points (mm)

*2 Verified at shipment from factory.

Hyper QVWLI Non-contact 3D Measuring System

• Hyper QVWLI is a high-accuracy dual 3D measurement system consisting of QV and a white light interferometer.

Κ

• You can perform 3D surface texture analysis from 3D data captured by the WLI optical system. You can also perform dimension measurement and cross-section measurement at a specific height using the 3D data.

Mitutoyo

Mitutoyo

Refer to the **QUICK VISION** Series Brochure (**E14028**) for more details.

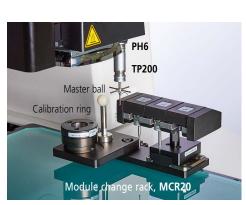
SPECIFICATIONS										
Items	Model No.	Hyper QVWLI 302	Hyper QVWLI 404	Hyper QVWLI 606						
Measuring range	Vision measuring area	300×200×190 mm	400×400×240 mm	600×650×220 mm						
(XxYxZ)	WLI measuring area*1	215×200×190 mm	315×400×240 mm	515×650×220 mm						
WLI optical head	d unit									
View field (H×V)		5X lens: approx. 0.64×0.48 mm/10X lens: approx. 0.32×0.24 mm/ 25X lens: approx. 0.13×0.10 mm/50X lens: approx. 0.064×0.048 mm								
Z repeatability		2 <i>σ</i> ≤ 0.08 μm								
Vision optical he	ead unit									
Observation unit		Programmable power turret 1X-2X-6X								
Imaging device		B&W CCD (1/2 in)								
\/:-:	E1x, E1y		(0.8 + 2L/1000) µm							
Vision measuring accuracy *2	E1z	(1.5 + 2L/1000) µm								
accuracy	E2XY		(1.4 + 3L/1000) µm							

*1 Movable range of **WLI** optical head.

*2 Inspected to a Mitutoyo standard. L=length between two arbitrary points (mm)

QV TP Active/QV TP Pro CNC Vision Measuring System equipped with a Touch Trigger Probe

Non-contact and contact measurement on one machine


• **QV** touch-trigger probe unit enables both vision measurement and touch-trigger probe measurement.

3D workpiece measurement

 Enables 3D measurement of workpieces, such as press-molded products, plastic-molded products, and machined products, that until now could not be measured with image processing alone.

Module change rack available

• Using the module change rack enables switching between vision measurement and touch probe measurement during an automatic measuring sequence.

Κ

QV TP HYPER 404 Pro

SPECIFICATIONS WITH TOUCH-TRIGGER PROBE OPTIONS MOUNTED

Items	Model No.	QV TP Active 202	QV TP Active 404
Measuring range *1	Vision	250×200×150 mm	400×400×200 mm
(X×Y×Z)	Common to Touch-trigger Probe	184×200×150 mm	334×400×200 mm
Measuring accuracy* ² (Touch-trigger probe)	E1x, E1y, E1z	(2.4 + 3L / 1000) μm	(2.4 + 3L/1000) μm

Items	Model No.	QV TP APEX 302 Pro	QV TP APEX 404 Pro	QV TP APEX 606 Pro	QV TP HYPER 302 Pro	QV TP HYPER 404 Pro	QV TP HYPER 606 Pro
Measuring range *1	Vision	300×200×200 mm	400×400×250 mm	600×650×250 mm	300×200×200 mm	400×400×250 mm	600×650×250 mm
(X×Y×Z)	Common to Touch-trigger Probe	234×200×200 mm	334×400×250 mm	534×650×250 mm	234×200×200 mm	334×400×250 mm	534×650×250 mm
Measuring accuracy* ² (Touch-trigger probe)	Ex, mpe/Ey, mpe/ Ez, mpe		(1.8 + 3L/1000) µm			(1.7 + 3L/1000) µm	

*1 When a module change rack, a master ball, and a calibration ring are mounted, the measurement ranges are smaller than those in the table. Other specifications are the same as those for QV Active, QV APEX Pro, and QV HYPER Pro. Please contact our sales office for more details.

K-7

*2 L=length between two arbitrary points (mm)

Refer to the **QUICK VISION** Series Brochure (**E14028**) for more details.

Vision Measuring Systems

• The LED used as the light source of the

control function that enables seamless

reflectivity.

measurement of materials with different

displacement sensor has an auto-brightness

MeasurLink[®] ENABLED

Example of 3D form comparison

QVH4 Pro

CNC Vision Measuring System equipped with Non-contact displacement sensor

- This dual system with a non-contact displacement sensor has a scanning function that enables measurement of minute height differences and 3D shapes.
- The non-contact displacement sensor (CPS probe) uses the wavelength confocal method.

Features: QVH4 Pro

- Enables detection of high inclination angles for both mirror and diffused surfaces.
- The automatic lighting adjustment function allows for high accuracy measurements.
- Surface roughness or thickness measurement of thin and transparent objects such as film.

COMMON SPECIFICATIONS

Items	Model No.	QVH4 APEX 302 Pro	QVH4 APEX 404 Pro	QVH4 APEX 606 Pro	QVH4 HYPER 302 Pro	QVH4 HYPER 404 Pro	QVH4 HYPER 606 Pro
Measuring range	Vision	300×200×200 mm	400×400×250 mm	600×650×250 mm	300×200×200 mm	400×400×250 mm	600×650×250 mm
(X×Y×Z)	Non-contact displacement sensor	176×200×200 mm	276×400×250 mm	476×650×250 mm	176×200×200 mm	276×400×250 mm	476×650×250 mm
	Eux/Euy, mpe	((1.5 + 3L/1000) µm			(0.8 + 2L/1000) µm	
Vision measuring accuracy*1	Euxy, mpe	(2.0 + 4L/1000) μm			(1.4 + 3L/1000) μm		
	Euz, mpe	(1.5 + 4L/1000) μm			(1.5 + 2L/1000) μm		
Displacement sensor measuring accuracy*1*2	(1.5 + 4L/1000) μm			(1.5 + 2L/1000) μm			

*1 L=length between two arbitrary points (mm) *2 Inspected to a Mitutoyo standard.

MeasurLink[®] ENABLED

Data Management Software by Mitutoyo

Safety precautions regarding QV HYBRID TYPE1

This product uses a low-power invisible laser (780 nm) for measurement. The laser is a CLASS 1 EN/IEC 60825-1 device. A warning and explanation label, as shown above, is attached to the product as appropriate.

COMMON SPECIFICATIONS

QV HYBRID TYPE1

CNC Vision Measuring System equipped with Non-contact displacement sensor

- This dual system with a non-contact displacement sensor has a scanning function that enables measurement of minute height differences and 3D shapes.
- The double-pinhole technique is used as the detection method of the displacement sensor. It is less directional compared with the knife-edge and triangulation techniques.
- The small laser spot with diameter of about 2 µm makes it possible to measure minute shapes.

Features: QV HYBRID TYPE1

- The focusing point method minimizes the difference in the measuring face reflectance and achieves high measurement reproducibility.
- Capable of measuring detailed shapes in high resolution.

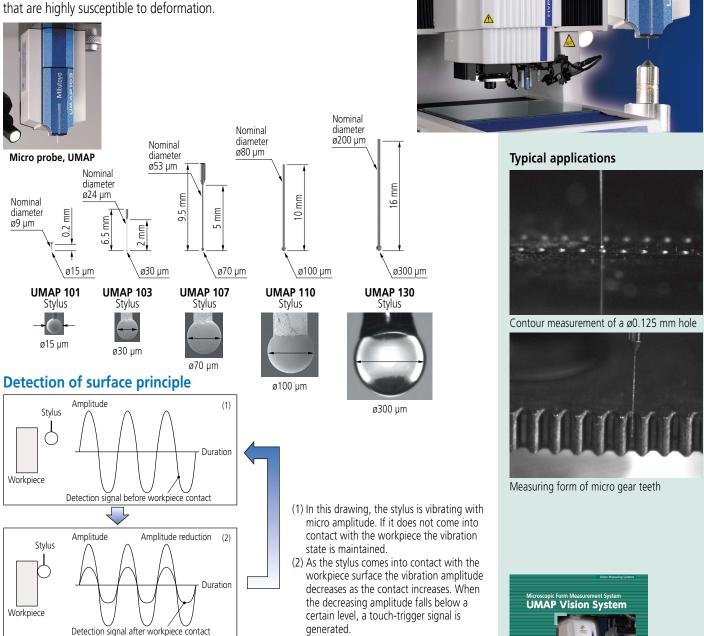
Items	Model No.	QVH1 Apex 302	QVH1 Apex 404	QVH1 Apex 606	Hyper QVH1 302	Hyper QVH1 404	Hyper QVH1 606
Measuring range	Vision	300×200×200 mm	400×400×250 mm	600×650×250 mm	300×200×200 mm	400×400×250 mm	600×650×250 mm
(X×Y×Z)	Non-contact displacement sensor	180×200×200 mm	280×400×250 mm	480×650×250 mm	180×200×200 mm	280×400×250 mm	480×650×250 mm
	E1x, E1Y		(1.5 + 3L/1000) µm	l	(0.8 + 2L/1000) µm		
Vision measuring accuracy*	E1z	(1.5 + 4L/1000)μm			(1.5 + 2L/1000)μm		
	E2XY	(2.0 + 4L/1000) µm			(1.4 + 3L/1000) µm		
Displacement sensor measuring accuracy*		(1.5 + 4L/1000) µm	l	(1.5 + 2L/1000)µm			

* Inspected to a Mitutoyo standard. L=length between two arbitrary points (mm)

K-8

OVH4 HYPER 606 Pro

MeasurLink® ENABLED Data Management Software by Mitutoyo



Mitutov

UMAP Vision System TYPE2 Micro Form Measuring System

Ultrasonic Micro Probe UMAP

Contact measurement of a small hole's diameter and its section or contour is possible, which is difficult with a conventional Vision Measuring System or CMM. Capable of high accuracy, sophisticated, non-contact and contact measurement on one machine. With a minimum measuring force of 1 μ N, it is not only less likely to mark workpiece surfaces, but also enables measurement of workpieces that are highly susceptible to deformation.

SPECIFICATIONS

	Model No.	TYPE2				
		Hyper UMAP 302	ULTRA UMAP 404			
X axis×Y axis		185×200 mm	285×400 mm			
	UMAP 101/103	175 mm				
Z axis	UMAP 107/110	180 mm				
	UMAP 130	185 mm				
E1x, E1Y		(0.8 + 2L/1000) μm	(0.25 + L/1000) μm			
E1z		(1.5 + 2L/	1000) μm			
UMAP	101/103/107	σ=0.1 μm	σ=0.08 μm			
UMAP	110/130	σ=0.15 μm	σ=0.12 μm			
	Z axis E1x, E1y E1z UMAP	X axis×Y axis Z axis Z axis E1x, E1Y X axis UMAP 101/103 UMAP 107/110 UMAP 130	Hode Hei Hyper UMAP 302 X axis×Y axis 185×200 mm UMAP 101/103 175 Z axis UMAP 107/110 180 UMAP 107/110 180 185 UMAP 107/110 180 185 E1x, E1Y (0.8 + 2L/1000) µm 185 E1z (1.5 + 2L/1000) µm 11.5 + 2L/1000) µm			

K-9

Mitutoyo

Refer to **UMAP Vision System** Brochure (**E14000**) for more details.

* Inspected to a Mitutoyo standard. L=length between two arbitrary points (mm)

MeasurLink[®] ENABLED

Vision Measuring Machine with Micro-Form Scanning Probe MiSCAN Vision System

- Hybrid measuring machine with vision head and scanning probe (MPP-NANO, SP25M).
- Newly developed **MPP-NANO** probe on which styli as small as 125 µm diameter can be mounted achieves autonomous 3D scanning of fine detail. The highly proven **SP25M** scanning probe is also supported.
- Using the observation camera, the approach to the workpiece for MPP-NANO stylus where visual confirmation is difficult can be easily performed while also checking for dirt and scratches on the workpiece.
- Using the same vision head as the **QUICK VISION** Series, the best-selling vision measuring system, high level performance can be provided in vision measurement.

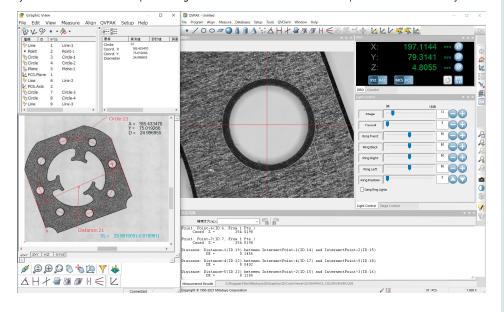
Precise positioning by monitoring the image

Measurement using MPP-NANO stylus

SPECIFICATIONS

Items		Model No.	Hyper MVS 302	Hyper MVS 404	MVS Apex 404				
Measuring range	Vision measuri	ng area	300×200×200 mm	400×400×250 mm					
(X×Y×Z)	MPP-NANO/S	SP25M	175×200×200 mm	275×400	×250 mm				
Imaging device			B&W CCD camera						
Observation unit			Progr	ammable power turret 1X-2	2X-6X				
Illumination unit			Co-axial light, Trar	nsmitted light, PRL (progra	mmable ring light)				
Contact type probe			MPP-NANO/SP25M	SP251	V only				
	E1x/E1y		(0.8 + 2L/	1000) µm	(1.5 + 3L/1000) µm				
	E1z		(1.5 + 2L/	(1.5 + 4L/1000) µm					
Measuring accuracy*	E2XY		(1.4 + 3L/	(1.4 + 3L/1000) µm					
	MPP-NANO	EO, MPE	(1.9 + 4L/1000) µm	-	_				
	SP25M	EO, MPE	(1.9 + 4L/	1000) μm	(2.5 + 6L/1000) µm				
Coopping accuracy	MPP-NANO		0.6 µm	-	_				
Scanning accuracy	SP25M	МРЕтнр	2.5 µm		2.7 µm				
Deching	MPP-NANO		0.6 µm	-	_				
Probing accuracy	SP25M	PFTU, MPE	1.9 µm		2.2 µm				
Repeatabillity (σ)	MPP-NANO		0.05 µm	<u> </u>					
Accuracy guaranteed	Ambient temp	erature	18 to 23 °C						
temperature	Temperature va	ariation		0.5 °C/1 H and 1 °C/24 H					

* Vision measuring accuracy using a QV-HR 2.5X objective and 2X tube lens.


Mitutoyo

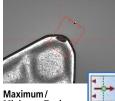
Milutoyo Quan

Refer to the **MiSCAN Vision System** Brochure (**E14024**) for more details.

QVPAK Data Processing Software for QUICK VISION

• The X, Y, and Z position data is detected from the measurement data gathered by the **QUICK VISION** system and the arithmetic processing of coordinates and dimensions is performed immediately.

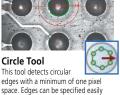
MeasurLink° ENABLED Data Management Software by Mitutoyo Miccart the standard in World metrology software


VISION

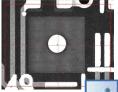
Edge Detection Tools

Simple Tool This is a basic tool for detecting one point.

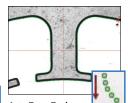
Maximum / Minimum Tool This tool detects the maximum or minimum point within the range.



This tool detects linear edges with a minimum of one pixel interval. Compared to the simple tool, the Box tool can perform averaging and remove abnormal points, which enables stable measurements.



Area Centroid Tool This tool detects the position of a form's centroid, and is suited to the positioning of different forms.



with a single click.

Pattern Search Tool This tool performs pattern matching to detect a position, and is optimal for positioning alignment marks and similar tasks.

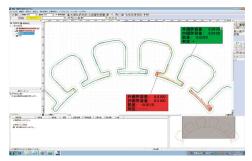
Arc Tool

This tool is suited to detection

of arcs and corner radii.

Auto Trace Tool This is a shape-measuring tool that automatically tracks a contour with input consisting only of a start point and end point.

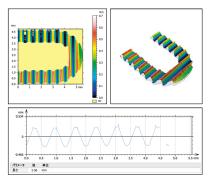
Mitutoyo


Refer to the **QUICK VISION** Series Brochure (**E14028**) for more details.

Application software (Optional)

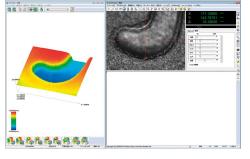
Form assessment/analysis software FORMTRACEPAK-AP

Verification of designed value and form analysis are performed on the basis of the contour data obtained via the **QV** auto trace tool, non-contact displacement sensor, PFF, and WLI.

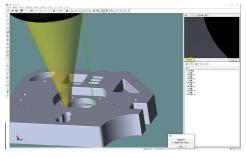


FORMTRACEPAK-PRO

This software performs 3D form analysis from the data obtained via the non-contact displacement sensor of the **QV HYBRID** Series.


MCubeMap

Allows you to analyze parameters compliant with JIS B681-2: 2018 (ISO25178-6: 2010), such as Sa, Sq and other height parameters from the 3D data captured by **QVWLI**.


QV3DPAK

This software generates 3D forms from the PFF (Points From Focus) or WLI (White Light Interferometer) data.

Measurement support software QV3DCAD

QV3DCAD uses 3D CAD models to easily create **QVPAK** part program both online and offline.

Offline teaching software EASYPAG-PRO

This software creates **QVPAK** measurement procedure programs using 2D CAD data.

Statistical processing software MeasurLink®

This software enables statistical arithmetic processing of measurement results.

External control software QVEio

Allows you to externally control or output the operating status of a **QV** connected to a PLC or PC.

Κ

MeasurLink® ENABLED

QS-L/AFC Manual Vision Measuring System

- Manual vision measuring system with a high speed, high-definition auto focus 3-megapixel camera.
- A 4-quadrant high-intensity LED ring light provides excellent observation performance.
- The newly designed zoom unit and interchangeable objectives achieve a maximum magnification ratio of 14X.
 Viewing possibilities extend from low magnification wide view measurement to high magnification micro-measurement.

QS-L3017Z/AFC

From wide view measurement to micro-measurement

Optical magnification	0.5X	0.65X	0.75X	0.85X	0.98X	1X	1.28X	1.3X	1.5X	1.7X	2X	2.25X	2.5X	3X	3.5X	3.75X	4X	5X	5.25X	7X
View field Horizont (mm) Vertical		10.2 7.7	8.8 6.6	7.8 5.9	6.8 5.1	6.6 5.0	5.2 3.9	5.1 3.8	4.4 3.3	3.9 2.9	3.3 2.4	2.9 2.2	2.6 2.0	2.2 1.6	1.8 1.4	1.7 1.3	1.7 1.2	1.3 1.0	1.2 1.0	0.9 0.7
Total magnification (on the	monitor) 20	26	30	34	39	40	51	52	60	68	79.3	89	99.3	119	138.7	149	158.7	198.7	208	277.3
1X objective (opt B Working distance	ional) 🔸	•		•		•	-	74 mm	1		•		•		•					
1.5X objective (st accessory) Working 2X objective (opt			•		•		•		•	42 (nm	•		•		•			•	
ିଡ଼ି 2X objective (opt Working distance	ional)					•		•		•	•	42 ו	nm	•			•	•		•

Note: The total magnification indicates the magnification on the monitor when the size of the **QSPAK** video window is 252.7×214.9 mm (default).

SPECIFICATIONS

Model No.		QS-L2010Z/AFC	QS-L3017Z/AFC	QS-L4020Z/AFC					
Drive method		Auto focus equipped, X, Y axis: manual; Z axis: motor-operated							
Measuring range (X×Y×	<z)< td=""><td>200×100×150 mm</td><td>300×170×150 mm</td><td>400×200×150 mm</td></z)<>	200×100×150 mm	300×170×150 mm	400×200×150 mm					
Resolution/Scale unit		0.1 µm/Linear encoder							
Vision measuring	X axis, Y axis		(2.2 + 0.02L/1000) µm						
accuracy*1*2	Z axis	(4.5 + 0.006L/1000) µm							
Accuracy guaranteed tem	perature	20±1 °C							
Observation unit*3		7X zoom (8 steps) interchangeable objective lenses (1X objective 0.5X - 3.5X; 1.5X objective 0.75X - 5.25X; 2X objective 1X - 7X)							
Image detection metho	d	3 megapixel, CMOS color camera (1/2 in)							
	Transmitted light	White LED							
Illumination	Co-axial light	t White LED							
	Ring light	4-quadrant white LED							

K-13

*1 Inspected to a Mitutoyo standard. L=length between two arbitrary points (mm)

*2 3X lens magnification or greater

*3 1X and 2X objective lenses are optional

Refer to the **QUICK SCOPE QS-L** Brochure (**E14004**) for more details.

Quick Image Non-contact 2D Vision Measuring System

- This series of manual 2D vision measuring machines offers high-efficiency measurement by employing a telecentric optical system that has a deep focal depth and a wide view monitor.
- The stitching function enables the entire display of a large workpiece so that highly accurate and speedy measurement can be performed.
- A model equipped with a motorized stage has been added to the series to offer easy and comfortable stage operation.
- A single click enables multiple measurements in one display. A batch measurement can be applied to multiple workpieces in the display after executing a pattern search based on the workpiece position.
- This series is equipped with a 3-megapixel color camera. Even with low magnification, high repeatability can be obtained.
- The choice of five stage sizes makes it easy to choose a machine to suit the user's application.
 - The video window automatically displays the measurement data, which enables quick verification.

A motorized stage

Refer to the QUICK IMAGE Series Brochure (E14009) for more details.

SPECIFICATIONS

Manual stage model Motorized stage model QI-A1010D QI-A2010D QI-A2017D QI-A4020D QI-C2010D QI-C2017D 0.2X QI-A3017D QI-C3017D Model No QI-B1010D QI-B2010D QI-B2017D QI-B3017D QI-B4020D 0.5X Measuring range (XxY) 100×100 mm 200×100 mm 200×170 mm 300×170 mm 400×200 mm 200×100 mm 200×170 mm 300×170 mm Effective stage glass size 170×170 mm 242×140 mm 260×230 mm 360×230 mm 440×232 mm 242×140 mm 360×230 mm 260x230 mm Maximum stage loading * Approx. 10 kg Approx. 20 kg Approx. 15 kg Approx. 10 kg Approx. 20 kg Approx. 164 kg Approx. 150 kg Approx. 158 kg Approx. 72 kg Approx. 153 kg Approx. 161 kg Main unit mass Approx. 65 kg Approx. 69 kg Does not include extremely offset or concentrated loads

Madal Na									
Model No.			QI-A/QI-C	QI-B					
View field			32×24 mm	12.8×9.6 mm					
Measurement mo	ode		High resolution mo	High resolution mode/Normal mode*1					
Travel range (Z ax	(is)		100	mm					
	Measurement accuracy	High resolution mode	±2 μm	±1.5 μm					
	within the screen *2	Normal mode	±4 μm	±3 µm					
Vision measuring accuracy	Repeatability within the	High resolution mode	±1 μm	±0.7 μm					
accuracy	screen $(\pm 2\sigma)^{*3}$	Normal mode	±2 μm	±1 μm					
	Measurement accuracy (E	1XY)* ²	±(3.5 + 0.02L) μm L=arbit	ary measuring length (mm)					
Monitor magnific	ation *4		7.6X	18.9X					
	Magnification (Telecentric	: Optical System)	0.2X	0.5X					
Optical system	Depth of focus	High resolution mode	±0.6 mm	±0.6 mm					
Optical system		Normal mode	±11 mm	±1.8 mm					
	Working distance		90	mm					
Camera			3 megapixel, CMOS color camera (1/2 in)						
		Transmitted light	Green LED telecentric illumination						
Illumination		Co-axial light	White LED						
		Ring light	4-quadrant white LED						
Power supply			AC100 to 240 V 50/60 Hz						
Accuracy guarant	eed temperature		20±	1 °C					
		*1 Datant r	agistared (Japan)						

1 Patent registered (Japan)

*2 Inspected to Mitutoyo standards by focus point position.

*3 The measuring accuracy is guaranteed to be accurate within the depth of focus.

*4 For 1X digital zoom (when using a 22-inch-wide monitor)

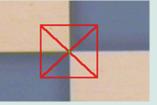
Quick Guide to Precision Measuring Instruments


Vision Measuring Machines

Vision Measurement

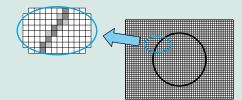
Vision measuring machines mainly provide the following processing capabilities.

Edge detection


Detecting/measuring edges in the XY plane

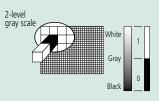
Auto focusing

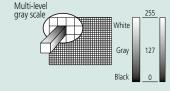
Focusing and Z-axis measurement



Pattern recognition

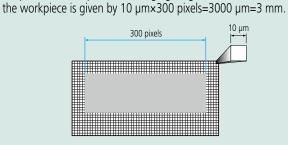
Alignment, positioning, and inspecting a feature


Image Storage

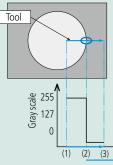

An image is comprised of a regular array of pixels. This is just like a picture on fine plotting paper with each square solid-filled differently.

Gray Scale

A PC stores an image after internally converting it to numeric values. A numeric value is assigned to each pixel of an image. Image quality varies depending on how many levels of gray scale are defined by the numeric values. The PC provides two types of gray scale: two-level and multi-level. The pixels in an image are usually displayed as 256-level gray scale.

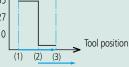

Pixels in an image brighter than a given level are displayed as white and all other pixels are displayed as black

Each pixel is displayed as one of 256 levels between black and white. This allows highfidelity images to be displayed

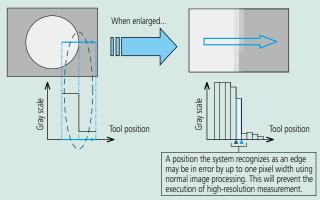

Dimensional Measurement

An image consists of pixels. If the number of pixels in a section to be measured is counted and is multiplied by the size of a pixel, then the section can be converted to a numeric value in length. For example, assume that the total number of pixels in the lateral size of a square workpiece is 300 pixels as shown in the figure below. If a pixel size is 10 µm under imaging magnification, the total length of

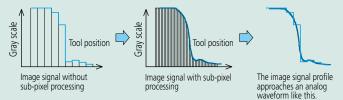
Edge Detection


How to actually detect a workpiece edge in an image is described using the following monochrome picture as an example. Edge detection is performed within a given domain. A symbol which visually defines this domain is referred to as a tool. Multiple tools are provided to suit various workpiece geometries or measurement data.

The edge detection system scans within the tool area as shown in the figure at left and detects the boundary between light and shade

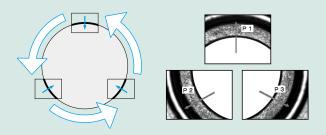

									53
243	242	220	195	94	73	66	54	53	55
244	246	220	195	94	75	64	56	51	50

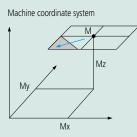
Example of numeric values assigned to pixels on the tool


(1) Scan start position (2) Edge detection position (3) Scan end position

High-resolution Measurement

To increase the accuracy in edge detection, sub-pixel image processing is used. An edge is detected by determining an interpolation curve from adjacent pixel data as shown below.


As a result, it allows measurement with a resolution better than 1 pixel.


K-15

Measurement along Multiple Portions of an Image

Large features that cannot be contained on one screen have to be measured by precisely controlling the position of the sensor and stage so as to locate each reference point within individual images. By this means the system can measure even a large circle, as shown below, by detecting the edge while moving the stage across various parts of the periphery.

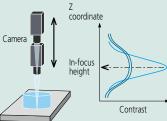
Composite Coordinates of a Point

Vx Vy Vy

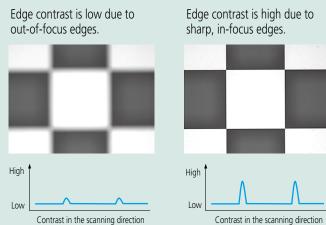
Vision coordinate system

Measuring machine stage position M = (Mx, My, Mz)

Detected edge position (from the center of vision) V = (Vx, Vy)


Actual coordinates are given by X=(Mx+Vx), Y=(My+Vy), and Z=Mz, respectively.

Since measurement is performed while individual measured positions are stored, the system can measure dimensions that cannot be included in one screen, without problems.

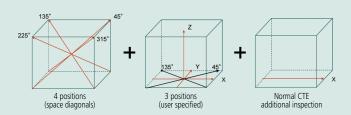

Principle of Auto Focusing

The system can perform XY-plane measurement, but cannot perform height measurement using only the camera image. The system is commonly provided with the Auto Focus (AF) mechanism for height measurement. The following explains the AF mechanism that uses a common image, although some systems may use a laser AF.

The AF system analyzes an image while moving the camera up and down in the Z axis. In the analysis of image contrast, an image in sharp focus will show a peak contrast and one out of focus will show a low contrast. Therefore, the height at which the image contrast peaks is the just-in-focus height.

Variation in Contrast Depending on the Focus Condition

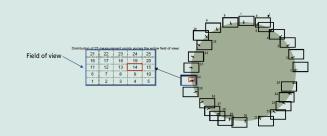
Overview of ISO 10360-7:2011


ISO 10360-7:2011 (Geometrical product specifications (GPS) --Acceptance and reverification tests for coordinate measuring machines (CMM) -- Part 7: CMMs equipped with imaging probing systems) was published on June 1, 2011.

Some inspection items are listed in ISO 10360-7:2011. The following summarizes the test method for determining length measurement error (E) and probing error (P_{F2D}).

Length measurement error, E

Five test lengths in seven different directions within the measuring volume, each length measured three times, for a total of 105 measurements. Four directions are the space diagonal. Remaining three directions are user specified; default locations are parallel to the VMM axes.


When CTE (coefficient of thermal expansion) of the test-length artifact is $< 2 \times 10^{-6}/K$, additional measurement using an artifact with a normal CTE (8 to $13 \times 10^{-6}/K$) is performed.

Probing error, PF2D

Measure 25 points distributed evenly around the test circle (14.4° pitch). Each of the 25 points shall be measured using the specified 25 areas of the field of view.

Calculate probing error as the range of the 25 radial distances (Rmax - Rmin) from the center of the least-square circle.

K-16

